Synthetic antimicrobial oligomers induce a composition-dependent topological transition in membranes.
نویسندگان
چکیده
Antimicrobial peptides (AMPs) are cationic amphiphiles that comprise a key component of innate immunity. Synthetic analogues of AMPs, such as the family of phenylene ethynylene antimicrobial oligomers (AMOs), recently demonstrated broad-spectrum antimicrobial activity, but the underlying molecular mechanism is unknown. Homologues in this family can be inactive, specifically active against bacteria, or nonspecifically active against bacteria and eukaryotic cells. Using synchrotron small-angle X-ray scattering (SAXS), we show that observed antibacterial activity correlates with an AMO-induced topological transition of small unilamellar vesicles into an inverted hexagonal phase, in which hexagonal arrays of 3.4-nm water channels defined by lipid tubes are formed. Polarized and fluorescence microscopy show that AMO-treated giant unilamellar vesicles remain intact, instead of reconstructing into a bulk 3D phase, but are selectively permeable to encapsulated macromolecules that are smaller than 3.4 nm. Moreover, AMOs with different activity profiles require different minimum threshold concentrations of phosphoethanolamine (PE) lipids to reconstruct the membrane. Using ternary membrane vesicles composed of DOPG:DOPE:DOPC with a charge density fixed at typical bacterial values, we find that the inactive AMO cannot generate the inverted hexagonal phase even when DOPE completely replaces DOPC. The specifically active AMO requires a threshold ratio of DOPE:DOPC = 4:1, and the nonspecifically active AMO requires a drastically lower threshold ratio of DOPE:DOPC = 1.5:1. Since most gram-negative bacterial membranes have more PE lipids than do eukaryotic membranes, our results imply that there is a relationship between negative-curvature lipids such as PE and antimicrobial hydrophobicity that contributes to selective antimicrobial activity.
منابع مشابه
a-Synuclein oligomers distinctively permeabilize complex model membranes
doi:10.1111/febs.12824 a-Synuclein oligomers are increasingly considered to be responsible for the death of dopaminergic neurons in Parkinson’s disease. The toxicity mechanism of a-synuclein oligomers likely involves membrane permeabilization. Even though it is well established that a-synuclein oligomers bind and permeabilize vesicles composed of negatively-charged lipids, little attention has ...
متن کاملDependence of antimicrobial selectivity and potency on oligomer structure investigated using substrate supported lipid bilayers and sum frequency generation vibrational spectroscopy.
Sum frequency generation (SFG) vibrational spectroscopy was used to study interactions between solid-supported lipid bilayers mimicking microbial and erythrocyte cellular membranes and synthetic antimicrobial arylamide oligomers named 2, 3, and 4, designed with the facial amphiphilicity common to naturally occurring antimicrobial peptides. The three compounds have the same backbone structure bu...
متن کاملLipid-dependent generation of dual topology for a membrane protein.
The mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is unknown. We posit that such duality is determined by both the protein sequence and the membrane lipid composition wherein a spatial or temporal change in the latter can result in a post-assembly change in protein structure and function. To investigate whether co-exis...
متن کاملThe role of ISCOMATRIX bilayer composition to induce a cell mediated immunity and protection against leishmaniasis in BALB/c mice
Objective(s):Development of new generation of vaccines against leishmaniasis is possible because long-term protection is usually seen after recovery from cutaneous leishmaniasis. ISCOMATRIX is particulate antigen delivery system composed of antigen, cholesterol, phospholipid and saponin. In this study, the role of ISCOMATRIX bilayer composition made by different phase transition temperature (Tc...
متن کاملTwo interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides.
Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 40 شماره
صفحات -
تاریخ انتشار 2007